
Visualizing Use Case Sets as BPMN Processes

Daniel Lübke and Kurt Schneider
Leibniz Universität Hannover, FG Software Engineering
{Daniel.Luebke,Kurt.Schneider}@inf.uni-hannover.de

Matthias Weidlich
Hasso Plattner Institute, Potsdam

Matthias.Weidlich@hpi.uni-potsdam.de

Abstract

The goal of many software projects is the support of busi-
ness processes. A typical business process spans multiple
Use Cases. This poses the difficulty of making the set of
encompassing Use Cases consistent with each other and
functionality-wise complete with regards to the overall busi-
ness process. Manual arrangements and reviews of Use
Cases are burdensome and time-intensive. Therefore, an
automatic approach is needed that restores an overview of
the Use Cases and visualizes the control-flow of the result-
ing business process. Our approach uses pre-conditions,
post-conditions, and triggers of Use Cases to automatically
assemble business processes in BPMN notation in order to
solve this problem.

1. Introduction

Software projects have become larger over the time
and therefore the software requirements specifications have
grown as well. One way to document requirements is the
use of Use Cases, which describe the interaction of an ac-
tor with the desired system. However, as the number of
Use Cases increases with the described functionality, the
overview, the dependencies and possibly the execution or-
der of Use Cases is lost more and more. Therefore, the
task of locating specific Use Cases in large documents and
avoiding contradictions becomes a hassle. Within this pa-
per we describe the generation of graphical business pro-
cess models in BPMN notation as a mean to restore the
global overview for the Use Cases and to order them accord-
ing to their pre-conditions and post-conditions. During re-
quirements elicitation, visualization can make requirements
engineers and stakeholders aware of wrong conditions and
Use Case specifications.

This paper is structured as follows: In the next section we

describe the related work that deals with scenarios and Use
Cases and their graphical representation. In the third sec-
tion, tabular Use Cases and BPMN are introduced shortly.
Afterwards, the generation algorithm of BPMN processes
from Use Case sets is described. This constitutes the main
contribution of this paper. In section five we demonstrate
our approach with a short example before we conclude and
present a short outlook.

2. Related Work

There is some related work concerned with the relation-
ship between (graphical) business processes and Use Cases
and generation between the two model types.

In his book about Use Cases, Cockburn mentions the
possibility of applying Use Cases for deriving business pro-
cesses. He offers a template in [1] but no rules or advice on
how to proceed from there.

The field of model-driven development has tried to in-
tegrate the concept of Use Cases within its UML models.
Instead of tabular and textual descriptions, UML sequence
diagrams or similar models are used [4]. A Use Case is
denoted in Use Case Diagrams and its scenario is refined
in other UML models. Thereby the textual description is
eliminated. This can pose a problem when communicating
with non-technical stakeholders because they are not used to
(technical) graphical notations. A process for UML-based
development of business processes is given in [6]. From
such approaches capabilities for expressing control-flow be-
tween Use Cases are missing and as such is the generation
of global business process models.

An existing approach for business process generation in
UML is to model the control-flow between Use Cases ex-
plicitly in at least one additional model. With the introduc-
tion of Use Case Charts and their formalization [9], it is
possible to define control-flow dependencies between Use
Cases and to refine them further in UML. In this approach



Table 1. Example Use Case in tabular Form

Use Case No. 1 Student applies for Thesis

Preconditions (none)

Trigger Student wants to write Thesis

Postconditions Application is submitted

Main Scenario

1. Students fills out form with per-
sonal data
2. System acknowledges receipt of
data on screen and by e-mail

Extensions 2a If form is not filled out completely
goto step 1.

Use Cases are called scenarios that may not have extensions
and that are modelled as UML sequence diagrams. How-
ever, dependencies between Use Cases cannot be derived
from the Use Case themselves but have to be modeled ex-
plicitly.

An approach by Somé for synthesising state transition
graphs from Use Cases is better addressing the visualization
aspect [7]. The metamodel used by Somé relates to tabular
Use Case descriptions. However, it is not as powerful as
Use Cases defined here because extensions must not have
further extensions. A tabular Use Case can be converted
to a state transition graph similar to graphical business pro-
cess languages. However, Somé’s approach does not deal
with combining many Use Cases to a larger state transition
graph. Thus, the state transition graphs can be used for sim-
ulating one Use Case [8] but are not suited for visualizing
dependencies between Use Cases.

A predecessor to our work here is the generation of EPC
models from Use Cases [3]. EPC models consist of fewer
graphical symbol types but are not as powerful as BPMN.
For example, BPMN can differentiate between different
event types (plain event, time-based event and so on). Fur-
thermore, BPMN seems to become the standard business
process modeling language. Therefore, the transformation
of Use Cases should have BPMN as the target notation.

3. Use Cases and BPMN

Use Cases are an established technique for capturing and
documenting requirements for software systems. Use Cases
can be captured in different ways [1]. Within this paper
we assume Use Cases to be in a tabular, semi-structured
form. Use Cases describe the interaction of actors (usually
the users) with the desired system. An excerpt with the rel-
evant parts of a tabular Use Case can be seen in table 1.

The main part of a Use Case is its main scenario in which
actors perform activities and the system responds accord-

ingly. The main scenario describes the success case of the
Use Case. Exceptions and non-success cases can be added
with extensions. An extension is a new scenario that can be
linked to steps and can be performed if a certain condition
is true. Furthermore, preconditions, triggers and postcondi-
tions are documented. These are the elements that are con-
sidered in our approach. Other information, like minimal
guarantees or the main actor are discarded.

The Business Process Modeling Notation (BPMN) [5] as
standardized by the OMG is a graphical notation for captur-
ing business processes. It aims at documenting and commu-
nicating business processes between all stakeholders. As an
easy-to-use yet powerful notation, intuitive visualization of
business processes is the strength of BPMN. Therefore, it is
suited for the visualization of the implicit control flow that
is hidden in the Use Case descriptions.

Collapsed 

SubprocessTask

Sequence Flow

Default Flow

Exclusive 

OR Gateway

Parallel 

Gateway

Plain 

Start 

EventAnnotation

Plain 

Intermediate 

Event

Plain 

End 

Event

Conditional Flow
cond 1

Figure 1. Subset of BPMN used in this paper

In general, BPMN is a graph-oriented approach and pro-
vides means to specify activities along with their control
flow dependencies. Activities can be either tasks that repre-
sent atomic work units or subprocesses. The latter contain
complete process definitions and might be collapsed for il-
lustration purposes as shown in figure 1.

Causal dependencies between activities are expressed
via sequence flow arcs. Further on, we apply a conditional
flow arc in case activation is based on a condition. In order
to ensure continuation of the process at a dedicated decision
point, a default flow can be applied. It is activated if none
of the conditional flows at the decision point are activated.

Such a decision point is modeled using an exclusive OR
gateway. Whenever one of its incoming flows is activated,
exactly one of its outgoing flows is activated based one the
conditions of these flows. In contrast, the parallel gateway
activates all of its outgoing flows, whenever all of its incom-
ing flows are activated.

BPMN processes graphs start with a start Event and end
with an end event, whereas events during the processing are
modeled by intermediate events. If the type of the event



Step 1

Trigger 1

…
 

Trigger n

Trigger Part

Precond. 

fulfilled

Main 

scenario 

ended

Main scenario part incl. extensions and jumps

Step m+1

Extension 

Step 1

… 

… 
Extension 

Condition

Step 2 … Step m

Step n

Figure 2. A BPMN process representing a single Use Case

trigger is not specified in detail, we refer to these events
as plain events. However, we apply annotation elements to
provide a basic description of the event trigger.

It is important to notice that the aforementioned con-
structs represent solely the subset of BPMN that we use
to visualize Use Case dependencies. The BPMN specifi-
cation introduces advanced control flow concepts (i.e. var-
ious gateway types), specialized event triggers, and means
to specify the data flow and resource assignments. It is also
worth mentioning that semantics of BPMN is specified in-
formally. However, a formal definition of semantics for the
subset of BPMN that is applied in this paper has been pre-
sented recently [2].

4. Generation of BPMN Processes from Use
Case Sets

The following elementary steps have to be performed in
order to visualize a Use Case set:

1. We have to derive a flat Use Case model. That is, all
include and extend relationships of Use Cases are re-
placed by the scenario and the extensions of the refer-
enced Use Case.

2. Generation of a single BPMN process for each of the
Use Cases. These processes are independent of each
other and consider solely the triggers, the main sce-
nario, all extensions, extensions steps, and jumps.

3. All generated BPMN processes are joined based on the
preconditions and success guarantees of the respective
Use Case.

4. The resulting BPMN process is refactored, i.e. mul-
tiple constructs representing an identical trigger are
identified such that only one of these constructs re-
mains in the model.

As the first step comprises just trivial replacements, we
focus on the algorithms realizing the other three steps in the
remainder of this section. In general, a BPMN process rep-
resenting a single Use Case starts with a plain start event
– representing the preconditions – that is followed by one
or multiple intermediate events that are executed in paral-
lel. These events represent the triggers of the according Use
Case. Further on, every step of the main scenario and po-
tential extension scenarios is represented by a task. The
causal dependencies between these tasks are captured us-
ing sequence flow connectors. Extensions and jumps are
handled using exclusive OR gateways. The generation is il-
lustrated in figure 2. Algorithm 1 defines the generation of
a BPMN process for a single Use Case in pseudo code.

The main logic is contained in the conversion of scenar-
ios which is recursive due to the recursive structure of the
extensions. We illustrate the conversion in algorithm 2.

After every Use Case has been converted to a BPMN
process, the processes can be joined in the third step. There-
fore, the preconditions and triggers are matched. In our ap-
proach this matching is a literal one so far although more
sophisticated implementations can use predicates in order
to yield better results.

For each postcondition that exists as a precondition or
trigger, the subprocesses representing the Use Cases are
connected. Whenever two Use Cases have the same post-
condition, the postconditions are joined first by introducing
a gateway. If the postcondition is used by more than one
Use Case, a parallel gateway is introduced to split the con-
trol flow. An example for joining four Use Cases is illus-
trated in figure 3. In this figure the third Use Case has only
the precondition that matches the postcondition of the first
and the second Use Case while the fourth Use Case has an
additional trigger.

Within the fourth step of the overall generation, dupli-
cate conditions are eliminated. In this step all events that
symbolize the same condition are unified.



Algorithm 1 Creation of a BPMN process for a single Use
Case

1: P := new BPMNProcess();
2: StartEvent := P.add(new

StartEvent(UC.PreConditions));
3: if UC.Triggers.Count > 1 then
4: ParallelGateway := P.add(new ParallelGateway());
5: LastElement := P.add(new ParallelGateway())
6: StartEvent.connectTo(ParallelGateway());
7: for all Trigger IN UC.Triggers do
8: Event := P.add(new IntermediateEvent(Trigger));
9: ParallelGateway.connectTo(Event);

10: Event.connectTo(LastElement);
11: end for
12: else
13: LastElement := P.add(new IntermediateEvent

(UC.Triggers[0]));
14: StartEvent.connectTo(LastElement);
15: end if
16: ConvertScenario(UC.MainScenario, LastElement);
17: for all Step in UC.Steps do
18: do something
19: end for
20: EndEvent := P.add(new

EndEvent(UC.PostConditions));
21: LastElement.connectTo(EndEvent);

Algorithm 2 Conversion of Scenarios to BPMN
1: Function ConvertScenario(Scenario, LastElement):
2: for all Step IN Scenario.Steps do
3: if Step.IsJumpTarget then
4: XORGateWay := P.add(new XORGateWay());
5: LastElement.connectTo(XORGateWay);
6: LastElement := XORGateWay;
7: end if

P.add(new Activity(Step));
8: if Step.isExtended then
9: XORGateWay := P.add(new XORGateWay());

10: LastElement.connectTo(XORGateWay);
11: LastElement := XORGateWay;
12: for all Extension IN Step.Extensions do
13: ConvertScenario(Extension, LastElement);
14: end for
15: end if
16: end for
17: if Scenario.JumpsBack then
18: LastElement.connectTo(

GetXORGateWayFor(Scenario.JumpTarget));
19: end if

Use Case 1

Use Case 2

Use Case 3

Use Case 4

Trigger for Use Case 4

Figure 3. Example for joining BPMN Pro-
cesses

5. Example

In order to illustrate the visualization of Use Cases in
BPMN, we take an excerpt from a larger project. The ex-
cerpt consists of the four Use Cases located at the start of
the process. The process is a university process that encom-
passes the management of masters’ and bachelors’ thesis.

Each Use Case, like Student applies for Thesis, have dif-
ferent preconditions, triggers and postconditions. The four
Use Cases can be joined as illustrated in figure 4. The join-
ing identifies that Student applies for Thesis can be in par-
allel to Student selects Topic. If the academic examination
office has approved the application, the two branches are
joined and it is the supervisors turn to approve the topic be-
fore the rest of the process can continue.

The visualization of these four Use Cases clearly denotes
the possible sequences of execution and the dependencies
between them. This is even more essential when dealing
with more Use Cases. The original project encompassed
about 60 Use Cases of which 35 were dealing with this cen-
tral business process. Using the visualization it is possible
to reengineer business processes and check whether precon-
ditions, postconditions and triggers are meaningful.

6. Beyond Literal Matching of Conditions

In the above algorithms, we assume identical conditions
when matching and connecting Use Cases. A match will be
made only when the postcondition of a Use Case and the
precondition (or guarantee) of it successor are literally the
same. This assumption was made to simplify the algorithms
that are the core of our contribution.

However, in many practical cases this assumption will
not hold. There are a number of ways to deal with condi-
tions that are not literally the same, but would semantically
permit connection of use cases:

Logical reasoning: In principle, the string representing
pre- and postconditions as well as guarantees could



U
n
iv
e
rs
it
y

S
u
p
e
rv
is
o
r

S
e
c
re
ta
ry

S
tu
d
e
n
t

Student applies 

for Thesis

Student selects 

Topic

Academic Examination 

Office approves Thesis

Supervisor 

approves Topic

Student wants to 

write Thesis

Application is 

submitted

Figure 4. Example of generating BPMN from
four Use Cases

be imported into a logical reasoning tool. For our
approach to work, it is sufficient for a postcondition
to logically imply the precondition of its successor(s).
This can be integrated seamlessly into our approach
and our algorithms. Our simplified algorithms assum-
ing literal match are stricter than they need to be. This
change would not make a conceptual difference to the
core of our approach. Currently we have not pursued
this line of work.

Human interaction using the visualizations: Human in-
teraction using the visualizations: Use Cases represent
stakeholder requirements. Those requirements can be
vague or distorted by false assumptions and misunder-
standings, and they can change over time. Conditions
in a Use Case template may not be as precise and def-
inite as they look. We consider it an interesting chal-
lenge to use our visualizations for confronting stake-
holders. Whenever conditions do not literally match,
Use Cases are not connected, according to our algo-
rithms. However, stakeholders could be invited to in-
teractive workshops to discuss this issue. By walking
through Use Cases and business process visualizations,

stakeholders may consider whether Use Cases “should
be connected” from their domain perspective. Such
a statement suggests: Conditions should permit con-
necting those Use Cases. If they do not, the conditions
should be rephrased. This application of our visualiza-
tion will extend the scope and benefit of our approach
in an interesting direction in the future.

By sketching two options for dealing with conditions
that do not literally match, we show possible extension of
our approach. However, the core of our approach presented
above is not affected by those extensions.

7. Conclusion and Outlook

Within this paper we have presented an approach to vi-
sualizing dependencies and ordering for Use Case sets. By
using this approach, it is possible to create BPMN models
that make the dependencies between Use Cases explicit by
using preconditions, postcondition and triggers. Stakehold-
ers and requirements engineers are therefore able to discuss
the ordering and the conditions of the Use Cases, which can
greatly improve the quality of the overall Use Case model.

In the future, we like to integrate case-based reasoning
for better matching of the conditions as well as tool-support
that is integrated into requirements engineering tools.

8. References

[1] A. Cockburn. Writing Effective Use Cases. Addison-Wesley,
14th edition, August 2005.

[2] R. Dijkman, M. Dumas, and C. Ouyang. Semantics and Anal-
ysis of Business Process Models in BPMN. Information and
Software Technology (IST), 2008. accepted for publication.

[3] D. Lübke. Transformation of Use Cases to EPC Models. In
Proceedings of the EPK 2006 Workshop, Vienna, Austria,
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-
WS/Vol-224/, 2006.

[4] Object Management Group. Unified Modeling Lan-
guage: Superstructure. WWW: http://www.omg.org/cgi-
bin/doc?formal/05-07-04, last access 2007-09-01, 2004.

[5] Object Management Group. Business Process Modeling No-
tation (BPMN) 1.1, January 2008.

[6] B. Oestereich, C. Weiss, C. Schröder, T. Weilkiens, and
A. Lenhard. Objektorientierte Geschftsprozessmodellierung
mit der UML. d.punkt Verlag, 2003.

[7] S. Somé. An approach for the synthesis of State transition
graphs from Use Cases. In Proceedings of the International
Conference on Software Engineering Research and Practice,
2003.

[8] S. Somé. Supporting Use Cases Based Requirements Sim-
ulation. In Proceedings of the International Conference on
Software Engineering and Practice (SERP’04), 2004.

[9] J. Whittle. A Formal Semantics of Use Case Charts.
Technical Report ISE-TR-06-02, George Mason University,
http://www.ise.gmu.edu/techrep, 2006.


