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Abstract. Business process models can be compared, for example, to
determine their consistency. Any comparison between process models
relies on a mapping that identifies which activity in one model corresponds
to which activity in another. Tools that generate such mappings are called
matchers. This paper presents the ICoP framework, which can be used to
develop such matchers. It consists of an architecture and re-usable matcher
components. The framework enables the creation of matchers from the re-
usable components and, if desired, newly developed components. It focuses
on matchers that also detect complex correspondences between groups
of activities, where existing matchers focus on 1:1 correspondences. We
evaluate the framework by applying it to find matches in process models
from practice. We show that the framework can be used to develop
matchers in a flexible and adaptable manner and that the resulting
matchers can identify a significant number of complex correspondences.

1 Introduction

Organisations compare business process models to identify operational com-
monalities and differences. Such comparisons are, for example, necessary when
organisations merge and need to determine and resolve the differences between
their operations, and when an organisation needs to check whether its operations
conform to an company-wide or industry-wide standard. The first step when
comparing business process models is always to determine which activities in one
business process model correspond to which activities in the other. This step is
called the matching step and can be supported by tools that are called matchers.
This paper presents a framework that can be used to develop such matchers.

A major challenge for matchers is that business process models often do
not use the same level of detail and the same words to describe activities. For
example, there is a problem with level of detail if one business process model
contains an activity ‘Check Invoice’, whereas the other describes the same activity
using a sequence of ‘Verify Customer Data’, ‘Decide on Correctness of Data’,
and ‘Approve Invoice’. This problem relates to refinement and meronymy. There



is a problem with the words used to describe an activity if there are two labels
‘Check Invoice’ and ‘Verify Bill’ that point to the same activity, although using
very different words. These are problems of synonymy and homonymy. This
problem of heterogeneous representation and description is of striking relevance
in practice [1, 2], because organisations usually do not align the way in which they
describe their business processes. It also is the major reason why the comparison
of related processes requires an extensive amount of manual preprocessing.

Therefore, this paper presents automated assistance for this ‘preprocessing
step, by proposing a re-usable framework for identifying correspondences between
activities in one process and equivalent activities in a similar process, while
taking into account that equivalent activities may be modelled at different levels
of granularity, have different labels, and have different control-flow relations to
other activities. The framework is specifically tailored to also deal with complex
1:n matches (i.e., each activity can be matched to an arbitrary number of other
activities), where existing matchers focus on elementary 1:1 matches (i.e., each
activity can be mapped to at most one other activity). The framework consists
of an architecture and a set of re-usable matcher components. Matchers can
be developed in the framework by composing them from existing components
and, if desired, newly developed ones. We present matchers that we implemented
within the framework, and we evaluate them using models from practice. Our
contribution is a framework with re-usable components to automatically find
both 1:1 and 1:n matches between activities from similar business processes.

While this contribution is significant to the process model matching field, it
also has implications for schema matching in general [3]. The research area of
schema matching covers a broad set of techniques, including structural analysis
and natural language processing to automatically identify the elements of one
schema (which are activities of a process model in our case) that match to those
of a second schema. Unfortunately, there has been a predominant focus on 1:1
matches in the schema matching community, such that ‘1:n and n:m mappings
[..] are currently hardly treated at all’ [3]. Although there are notable exceptions,
like iIMAP [4], these techniques cannot be applied in our context as they have
been tailored for data models and partially also use the extension of a database.
We further discuss this issue when reviewing related work in section 5.

The paper is structured as follows. Section 2 describes the background of the
problem by an example of process models with activity correspondences. Section 3
introduces the ICoP framework for developing matchers. It describes both the
framework itself and the techniques that are implemented as components of the
framework. Section 4 presents the evaluation of the framework. Section 5 assesses
our contribution in the light of related work. Section 6 concludes.

9

2 Background

The relevance of finding matches in pairs of corresponding process models has
been described before [1,2]. In this section, we aim to illustrate the problem and
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Fig. 1. Two BPMN process models with one 1:1 and three 1:n correspondences

the underlying combinatorial challenges using a pair of example processes. We
also introduce terminology that we will use throughout the paper.

Figure 1 shows the operations of a company that produces lasers. The upper
model depicts the process in a way that hand-overs between different departments
can easily be traced. The lower process focusses more on the operational details
as being conducted in the manufacturing unit. Roughly speaking, both processes
describe that first the component production is set up, then the laser units are
developed, assembled, tested, prepared for shipment, and finally installed at the
sight of the customer. There are matches of different complexity between the
activities of the two models. In the general case, a match refers to a correspondence,
which is an element of the powerset of activities of a first model times the powerset
of activities of a second model. Thus, a match is denoted by a tuple (A, As) of two
sets of activities. A match (A, As) is called elementary match, if |A1]| = |As| = 1.
An example are the ‘Final Laser Unit Installation’ (FLUI) and the ‘Final Laser
Installation’ (FLI) activities. We say that FLUI matches or corresponds to FLI.
This match pair can be easily identified due to the syntactic similarity of the
labels and the same position at the end of the processes.

Figure 1 also highlights three complex matches by dotted lines. A match
(A1, As) is called complex if at least one activity set in the pair contains more
than one element, i.e., |A1] > 1 or |Az| > 1. The first complex match on the left-
hand side shows that ‘Set up Laser Component Production’ of the lower model
describes the same activities as the set of ‘Gather Installation Requirements’,
‘Negotiate Support Contract’, and ‘Create Laser Specification’ in the upper model,
but at a different level of granularity. Thus, it is a 1:3 match as there is one
activity corresponding to three activities in the upper model.

The goal of automatic process model matching is to find all those matches
that are meaningful. Usually, there are conditions that a collection of meaningful
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matches has to obey, for instance, that the matches do not overlap. That is, for
every pair of matches (Ay, As) and (A3, A4) in the mapping it holds Ay N A3z =0
and Az N A4 = (). We call this collection of matches a mapping. From a structural
point of view, a mapping is an element of the powerset of matches.

Identification of complex matches imposes serious challenges. For the case of
1:1 matches, it might be feasible to analyse the whole set of potential matches,
which corresponds to the Cartesian product of activities of two process models.
In contrast, the possibility of 1:n matches increases the size of the set of potential
matches significantly. For two process models with n and m activities, respectively,
the number of 1:x matches is given by n * (Zl) + m x (Z) Here, the binomial
coefficient (Z) defines the number of x-element subsets of an n-element set.
For instance, the two process models depicted in Fig. 1 consist of 13 and 8
activities, respectively, which, in turn, yields 104 potential 1:1 matches. However,
considering the possibility of 1:2 and 1:3 matches in addition increases the set
of potential matches by 13 % (g) + 13 % (g) = 1092 matches for one direction,
and 8 x (123) + 8 x (133) = 2912 matches for the other direction. One might argue
that for the case of process models, the value of x might be bound by some
threshold instead of the number of nodes of the respective model. However, our
experience shows that this threshold must not be set too low (we encountered up
to 1:9 matches), such that the amount of possible combinations still hinders any
attempts to analyse the whole set of potential matches. These observations call
for adequate search heuristics and an architecture that evaluates efficiently.

3 The ICoP Framework

This section introduces the ICoP framework for automatic derivation of matches
between two process models. Section 3.1 discusses the overall architecture. We
elaborate on the four types of components, namely searchers, boosters, evaluators,
and selectors, in detail and present exemplary realisations in Sections 3.2 to 3.5.

3.1 Architecture

The overall architecture of the ICoP framework stems from the observation that
the number of (1:n) matches between two business process models is potentially



large and therefore it is not feasible to explore all possible matches exhaustively.
Instead, the ICoP framework proposes a multi-step approach, which is illustrated
in Fig. 2. Given two process models, searchers extract potential matches based on
different similarity metrics and heuristics for the selection of activities. The result
of the search stage is a multiset of matches due to the possibility of multiple
searchers identifying the same potential matches. Each match is assigned a maitch
score, which results from the scoring function implemented by the searcher to
select potential matches. Note that a searcher may use the knowledge about
potential matches that have been identified by other searchers already.

After completion of the search stage, the scored potential matches are conveyed
to boosters. These components ‘boost’ the matches that are returned by the
searchers using certain heuristics in order to aggregate matches, remove matches,
or adapt the score of a match. As part of the boosting stage the multiset of
potential matches is transformed into a set of potential matches by aggregating
matches that have been identified by multiple searchers.

Subsequently, a selector builds up the actual mapping from the set of potential
matches. That is, it selects the best matches from the set of potential matches, in
such a way that the constraint that matches are not overlapping is satisfied. The
selection of the best matches can be guided by two kinds of scores. On the one
hand, the individual match scores of the potential matches can be exploited. On
the other hand, an evaluator can be utilised, which assigns a single mapping score
to a mapping. An evaluator may use knowledge about the original process models
to compute this score. The selection is an iterative process. In each iteration the
selector selects a set of matches, the evaluator computes the score for this set,
upon which the selector either decides to modify the set of matches and continue
the selection, or to complete the selection. Once the selection procedure completes,
the selector produces the final mapping between elements of the process models.

3.2 Match Searchers

Searchers identify potential 1:1 and 1:n matches between two process models
along with a score that indicates the quality of the match. Such a match is
denoted by (A1, As, s) with s being the match score based on the similarity of
the matched activities. Therefore, we will also refer to the similarity score of a
match. The similarity of a match can be determined based on various aspects,
including the labels or descriptions of the matched activities and structural or
behavioural relations between those activities.

We now introduce four searchers that have been implemented in the ICoP
framework. Although a similarity score for the activity labels is at the core of all
searchers, they incorporate similarity metrics for different aspects of labelling.

Similar Label Searcher. The purpose of this searcher is to identify straight-
forward 1:1 matches based on a high syntactic similarity of activity labels. It
computes the Cartesian product of activities of two process models and selects
all pairs of activities for which the string edit similarity of their labels is above a
given threshold. For two strings s; and sy the string edit similarity is defined as

sim(sy, s2) =1— % with ed(sq, s2) as the string edit distance, i.e., the
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minimal number of atomic character operations (insert, delete, update) needed to
transform one string into another [5]. As the string edit similarity is a rather strict
criterion (different orders of words and linguistic phenomena such as synonymy
are neglected), the potential matches are identified with high confidence, such
that the initial score for these matches is set to one by the searcher. For the
scenario illustrated in Fig. 1 and a threshold of 0.8, for instance, the searcher
identifies the match between the activities describing the installation of the laser.
Clearly, the runtime complexity of this searcher depends solely on the number of
activities of the respective process models.

Distance Doc Searcher. This searcher follows a two step approach in order
to identify potential 1:n matches. First, activities of both process models are
grouped heuristically. Second, the similarity between such a group of activities in
one model and all single activities in the other model is assessed. Assuming that
it is more likely that activities that are closer to each other should be in the same
group, we use the graph distance to group activities. The graph distance between
two activities is the number of edges on the shortest path from one activity to
the other. Given a base activity and a distance, we look for four types of groups:

— Sequences, which are determined by a base activity and the activities on a
directed path of the given length (distance) from the base activity.

— Splits, which are determined by a base activity and the activities that can
be reached from the base activity and that are within the given distance.
The base activity can or cannot be considered in such groups, depending on
whether the choice leading to the split is or is not modelled explicitly.

— Joins, which are determined by a base activity and the activities from which
the base activity can be reached and that are within the given distance. The
base activity can or cannot be considered in such groups.

— Others, which are the groups that consist of all activities that are within the
given distance of a base activity (not considering the direction of edges). In
contrast to sequences, these activities are not necessarily on a path.

For the lower model of Fig. 1, Fig. 3(a) shows examples of a group that is a
sequence with base ‘E’ and distance 2, a split with base A and distance 2, and
an ‘other’ with base F and distance 2. The distance doc searcher identifies all
groups of activities in a process model by taking each of the activities as a basis
and creating each possible type of group for each possible graph distance value.
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Fig. 4. (a) RPST fragments for the lower model of Fig. 1, (b) the corresponding RPST

A maximum distance value can be set as a parameter. The groups are collected
in a set to avoid duplication.

Once all groups of activities have been identified, the notion of ‘virtual
documents’ is used to score their similarity. Virtual documents were introduced
for aligning ontologies [6]. A virtual document of a node consists of the words
from all textual information that is related to that node. Given two virtual
documents, their similarity can be calculated based on their distance in a vector
space, in which the dimensions are the terms that appear in the documents and
the values for the dimensions are computed using term frequency [7]. In our
setting, a virtual document for an activity consists of the terms that are derived
from the activity label and, if this information is available, the labels of the roles
that are authorized to perform the activity, the assigned input and output data,
and a textual description of the activity. For a group of activities, the virtual
document is derived by joining the documents of the respective nodes. Note that
the creation of virtual documents includes a normalization of terms, filtering of
stop-words, and term stemming [8]. Fig. 3(b) illustrates the terms of the virtual
document for the group ‘Sequence E 2’. These terms originate from the activity
labels, the label of the associated role, and the data output of one activity, while
we also applied stop-word filtering and term stemming. Note that the runtime
complexity of this searcher is heavily influenced by one parameter besides size
and structure of the models. The maximal graph distance value for grouping
activities might increase complexity significantly.

Fragment Doc Searcher. This searcher is similar to the distance doc
searcher, except that it relies on the Refined Process Structure Tree (RPST) [9]
for grouping activities. The RPST parses a process model into a hierarchy of
fragments with a single entry node and a single exit node. Fig. 4(a) depicts these
fragments for the lower process model in Fig. 1. The fragments are defined in
such a way that they do not overlap. Consequently, they form a tree-structure,
as illustrated in Fig. 4(b) (cf., [9]). We leverage the hierarchy of fragments in
order to select the groups of activities that will be considered by the searcher.
Starting with the leaf fragments of the RPST, the tree is traversed upwards up to
a height that is given as a parameter. All traversed fragments are considered by
the searcher that creates two virtual documents for each fragment, one containing
all activities of the fragment and one containing all activities except those that
are boundary nodes of the fragment. As in case of the Distance Doc Searcher,
the similarity of the virtual documents is assessed using a vector space approach.



For the example in Fig. 4 and a height threshold of two, the searcher considers
the fragments B1, B2, P2, P3, and P4. The runtime complexity of this searcher
mainly depends, besides size and structure of the models, on the height up to
which the RPST is traversed upwards for identifying groups of activities.

Wrapup Searcher. This searcher resembles the Similar Label Searcher,
as it also aims at deriving potential 1:1 matches by analysing the string edit
similarity for the labels of a pair of activities. In contrast to the Similar Label
Searcher, however, not the whole Cartesian product of activities of two process
models is considered. In fact, solely activities that have not been addressed in
potential matches retrieved by other searchers are taken into account. Obviously,
the Wrapup Searcher has to be run after all other searchers. In addition, the
threshold for the similarity of two activity labels is typically set to a lower value
than for the Similar Label Searcher.

3.3 Match Boosters

After potential 1:1 and 1:n matches have been identified, the multiset of scored
matches is propagated to a set of boosters. We implemented the following four
boosters as part of the ICoP framework.

Cardinality Booster. This booster reduces the multiset of potential matches
to a set by aggregating the similarity scores for potential matches that asso-
ciate the same (sets of) activities to each other. Two matches (A;, Az, s1) and
(A3, Ay, 80) with A} = Az and Ay = Ay are replaced by a match (Ay, A, s4),
such that s, = s1 + (1 — s1) * s is the first score increased by the second relative
to its current value. Note that the operation is symmetric and can iteratively be
applied if more than two scores need to be aggregated.

Subsumption Booster. The idea behind this matcher is that a 1:n match
(A1, Az, s1) might subsume another match (As, A4, s2), such that 4; = Az and
A4 C Ay, As similarity scoring based on vector spaces tends to favour documents
consisting of a small number of terms, the subsumed matches will have higher
initial similarity scores on average. To countervail this effect, we boost a 1:n
match, if it subsumes other matches. If the match (Ap, As, s1) subsumes the
match (As, Ay, $2), its similarity score is increased relative to the current value,
such that s; := $1 + ws * (1 — $1) * s with w, € [0..1] as a weighting factor.

Tree Depth Ratio Booster. In contrast to the aforementioned boosters,
this booster considers solely a single match and boosts the score of a match, if its
activities show a certain structural property that is evaluated based on the RPST.
Given a match (A7, As, s1), we determine the least common ancestors (LCA) of
A; and Aj in the RPST of the respective process model, denoted by lca(A;) and
lca(Asg). Further on, let maxDepth; and maxDepths be the maximal depths of
a fragment in the RPSTs of the two process models. Based thereon, we determine
two ratios by relating the depth of the LCA to the maximal depth of the tree,
ie.,r = #‘;ﬁt)hl and 19 = %’%7 with 71,7 € [0..1]. Boosting the match
takes places, if the average of the two ratios is above a threshold, which indicates
that both LCAs are relatively low in the tree. That, in turn, can be interpreted
as a hint for a good quality of the match. In this case, the similarity score of



the match is increased according to the average of the two ratios, relative to
the current similarity score, i.e., s; := s1 + (1 — s1) * w, x 0.5 % (11 + 7r2) with
wy € [0..1] as a weighting factor.

Distance Ratio Booster. This booster also considers solely single matches.
Here, the structural property that is evaluated relates to the graph distance
as mentioned above. For each of the sets of activities A7 and As of a match
(Aq, As, 1), we determine the maximal distance between two activities of this set.
That is, for each activity we compute the distance from or to all other activities
and select the minimal distance. Then, the maximal value of all these minimal
distances is chosen, denoted by maxzDistance(A;) and maxDistance(Asy), re-
spectively. Furthermore, let maxDistance; and mazxDistances be the maximal

distances that can be observed between two activities that are connected by a path
—1_ maxDistance(A;)

in the two process models. Again, we define two ratios rq mazDistance,

and ro =1 — %’ with 71,79 € [0..1]. If the average of both ratios is

above a threshold, the similarity score of the match is increased according, i.e.,
s1:=81 + (1 — s1) *xwq x 0.5 % (r, + 72). Here, wq € [0..1] is the weighting factor.

3.4 Mapping Selectors

Once the match similarities have been adapted by the match boosters, a selector
extracts a mapping from the set of scored potential matches. As mentioned above,
any mapping has to satisfy the constraint of non-overlapping matches. While
selectors follow different notions of quality for a mapping, they have in common
that the derivation of the optimal mapping (w.r.t. to the chosen quality criterion)
is a computationally hard problem. Therefore, our selectors follow a greedy or
1-look-ahead strategy. Experiments in a similar context revealed that results
obtained by a greedy matching strategy are close to those obtained with an
exhaustive strategy [10]. The ICoP framework consists of the following selectors.

Match Similarity Selector. This selector selects a non-overlapping map-
ping solely based on the similarity scores assigned to potential matches. The
match with the highest score is selected (in case of multiple matches with an
equal score one is chosen arbitrarily) and the set of potential matches is reduced
by the matches that are overlapping with the selected match. The mapping is
constructed iteratively until the highest score for a potential match is below a
given threshold. Besides this greedy strategy, we also implemented a 1-look-ahead
strategy, which optimizes the score for the succeeding iteration in case of multiple
matches with equal scores.

Mapping Similarity Selector. This selector neglects the scores assigned
to potential matches and relies solely on the score for a (partial) mapping as
provided by an evaluator. The matches to build the mapping are iteratively
selected such that in each step the match leading to the maximal score for the
mapping is selected. In case of multiple matches meeting this requirement, one
is chosen arbitrarily. The procedure terminates once the mapping score cannot
be increased any further. Again, we implemented this greedy strategy and a
1-look-ahead variant that selects the match that leads to the maximal mapping
score in the succeeding iteration.



Combined Selector. This selector uses both, match scores and mapping
scores as provided by an evaluator. In a first step, the highest match score is
determined. All potential matches having assigned this score are then selected for
the mapping (in case this is not possible due to overlapping matches, selection
is randomised). In a second step, the mapping is iteratively extended with the
match that maximises a combined score that is built from its individual match
score and the mapping score as computed by the evaluator. Here, both scores
are combined in a weighted way (e.g., the mapping score might have a bigger
impact than the match score). The procedure terminates if the combined score
cannot be increased any further. Again, the second step of the selector has been
implemented as a greedy and as a 1-look-ahead strategy.

3.5 Mapping Evaluators

A mapping selector can use a mapping evaluator to score mappings. Given a
(partial) mapping, the evaluators return a single score for the quality of the
mapping. Of course, different notions of quality can be considered. In the ICoP
framework, we implemented the two following evaluators.

Graph Edit Distance Evaluator. This evaluator scores a given mapping
based on the graph edit distance of the two original process models that is
induced by the mapped activities. For a pair of graphs and a mapping between
their nodes, the graph edit distance defines the minimal number of atomic graph
operations (substitute node, insert/delete node, (un)grouping nodes, substitute
edge, insert/delete edge) needed to transform one graph into another [11]. For
these operations, only mapped nodes are considered to be substituted and
potentially grouped. For example, to transform the upper process to the lower
process in Fig. 1, considering the mapping that is represented in the figure,
operations that have to be performed include: substituting ‘Final Laser Unit
Installation’ by ‘Final Laser Installation’; grouping ‘Order Mechanical Parts’
and ‘Develop Mechanical Parts’; and inserting ‘Assemble Laser Component’.
Optionally, operations can be weighted instead of just counted (e.g.: a node
insertion can count for 0.8 instead of 1). The graph edit distance can be leveraged
to define a similarity score according to [12]. This score is computed as 1 minus
the fraction of the given mapping and a hypothetical ideal mapping. The ideal
mapping matches each node and each edge in one process with a node or an edge
in the other process with a quality of 1.0. The similarity score defines the quality
of the mapping according to the Graph Edit Distance Evaluator.

Path Relation Evaluator. The evaluator scores a given mapping based on
whether the path relations are preserved for the activities of a pair of matches of
the mapping. For a pair of matches M; = (41, Az, s1) and My = (As, A4, s2), we
derive the number of preserved path relations pre(Mi, Ma) = |{(a1, az2,a3,a4) €
(A1 x Ag x Ag x A4) | path(ai,as) < path(az,aq)}| with path(z,y) being a
predicate that denotes the existence of a path from activity x to activity y. Then,
the evaluation score for the pair of matches My and Ms is defined as s(M;, Ms) =
%. Based thereon, the score for the mapping is computed by iterating
over the Cartesian product of matches and computing the average of their scores.



4 Evaluation

We evaluate the matchers by comparing the matches that they discover to matches
that business process analysts found in a collection of 20 pairs of process models.
3 pairs are taken from a merger in a large electronics manufacturing company.
Each of these pairs represents two processes that have to be merged. 17 pairs are
taken from municipalities. Each of these pairs represents a standard process [13]
and an implementation of this standard process by a municipality. Each process
model from the collection has, on average, 31.1 nodes, with a minimum of 9 nodes
and a maximum of 81 nodes for a single process model. The average number of
arcs pointing into or out of a single node is 1.2 and the average number of words
in the label of a single node is 2.8.

For the 20 process model pairs, process analysts determined a total of 520
matched activity pairs. Of these 520 pairs, 221 were part of a complex match.
However, the distribution of these complex matches in our model collection shows
a high variation. For instance, for 3 out of the 20 model pairs (the model pairs
from the merger), more than 90% of the activity pairs relate to complex matches.
In turn, 6 model pairs contain solely elementary 1:1 matches.

We evaluate the performance of the matchers in terms of precision and recall.
The precision is the fraction of found activity matches that that is correct (i.e.,
that is also found by process analysts). The recall is the fraction of correct activity
matches that is found. The F-Score combines precision and recall in one value. We
also compute the Overall score, an alternative metric that has specifically been
developed for measuring the quality of schema matches [14]. Note that all metrics
are based on activity pairs. Thus, complex matches are split up into activity
pairs, e.g., ({a,b},{z}) yields two activity pairs ({a}, {z}) and ({b}, {x}).

Ch = Activity pairs identified by human observer

CCyp, C Ch, = Activity pairs that are part of a complex match

CE1, C Cp = Activity pairs that are elementary matches (CCp and CEp, partition Cp,)
Cm, CCr,, and CE,, are analogously defined as the sets of activity pairs, complex matches,
and elementary matches identified by matcher m.

precision = |Cm N Ch]/|Crm| recall = |Crm N Cr|/|Ch|
recall-elementary = |CEy NCEL|/|CER| recall-complex = |CCp, N CCh|/|CCh|
F-score = 2. (precision - recall) / (precision + recall)

Overall = recall - (2 — 1/precision)

For our evaluation, we created five matchers within the ICoP framework.

Baseline Matcher This matcher represents the greedy graph matcher presented
in [12] and consists of a Wrapup Searcher, a Graph Edit Distance Evaluator,
and a Mapping Similarity Selector. This matcher identifies solely elementary
matches and achieves high precision and recall in doing so. Therefore, we use
it as a baseline benchmark for our framework, which focuses on improving
results with respect to complex matches.

Matcher A This matcher consists of all searchers (cf., Section 3.2) and a Look
Ahead Match Similarity Selector. Thus, it demonstrates the pure performance
of our searchers.



Matcher B This matcher extends Matcher A by incorporating all four match
boosters introduced in Section 3.3. Therefore, this matcher shows the impact
of the boosters on the matching process.

Matcher C This matcher consists of all searchers, but in contrast to matcher
A, it takes the evaluation of (partial) mappings into account when selecting
a mapping. That is, it relies on the Path Relation Evaluator, while a Look
Ahead Combined Selector is used to demonstrate its effect.

Matcher D This matcher consists of all searchers and evaluates partial map-
pings, but uses another mapping evaluator than matcher C, i.e., a Graph
Edit Distance Evaluator.

Note that matchers A and B, as well as C and D, are very similar. The former
rely solely on the scores assigned to matches in order to build up the mapping,
whereas the latter use a combined approach that also considers the scores derived
by evaluating a (partial) mapping.
Fig. 5 depicts the re- EBaseline B Matcher A O Matcher B IMatcher C I Matcher D

sults of applying these
five matchers to the set of
20 model pairs, by show-
ing the precision, recall,
F-Score, and Overall as
defined above for one spe-
cific configuration of each
matcher that maximises
the F-score for the whole , | |
model collection. In addi- Precision Recall Recall Recall F-Score Overall

tion to presenting the re- Flementary - Complex
call as a whole, it presents Fig. 5. Metrics derived for the whole model collection

the recall for the complex 1:n matches and the elementary 1:1 matches separately.
Note that, although the baseline matcher is not meant to detect complex matches,
it does return some, due the fact that some activity pairs that it identifies as 1:1
matches are actually part of a complex match.

The results show that the architecture works and, while it has a more adaptable
modular setup, produces the same results as were obtained by the more rigid
matcher that we developed in prior work [12]. The results also show that the
architecture can be used to produce matchers that detect complex 1:n matches
and that their recall is better than that of our baseline matcher. Unfortunately,
the complex matchers improve recall at the expense of precision, leading to an
F-Score that is slightly lower than that of the baseline matcher. The comparison
of the results for matchers A and B reveals that the application of match boosters
increases the precision, at the cost of decreased recall. Similarly, the Path Relation
Evaluator in matcher C leads to a better precision than the Graph Edit Distance
Evaluator in matcher D, which, again, is traded for recall to a certain extent.

There is a large difference between the results with respect to the use-case
from which they were derived. As indicated 3 model pairs originated from a
comparison in a merger, while 17 originated from a comparison of standard



processes to their implementations. The results for the merger model pairs are
much worse than the results for the standard process comparison pairs. With
an F-Score of around 0.3 the results for the merger model pairs are so bad that
we conclude that the matchers cannot be used for this use-case. Qualitative
analysis of the results shows that the reason for the bad performance of the
matchers for this use-case mainly stems from the fact that the activity labels of
matched tasks are very different. This leads to the conclusion that, in order for
the current matchers to work, there must be some level of similarity between
activity labels of similar activities; a pre-condition that is met in the standard
process implementation use-case, but not in the merger use-case.

5 Related Work

Our work can be related to two main areas of research, namely process model
similarity and database schema matchers that aim at finding complex matches.

Work on process model similarity can be traced back to formal notions of
behavioural equivalence (see [15]) and integration of process models (see [16—
20]). These works assume that correspondences between process models have
been identified, but do not discuss how these correspondences can be found.
Recent research in this area provides promising solutions to automatically match
activities in pairs of process models, mainly as a vehicle to automatically calculate
a similarity value for the models altogether. Structural and semantic information
is used in [21], behavioural information in [22], and graph-edit distance techniques
are used as well [10]. All these approaches only identify 1:1 matches between
activities, just as many approaches from schema matching do [3,7]. With our
ICoP framework we address the need to automatically propose complex matches
between process model activities, which has been identified in [1].

One of the few database schema matching approaches that consider complex
matches is the iMAP system [4]. iMAP inspired our work, as it introduces the
idea of searching the space of potential complex matches using a set of searchers
implementing different search heuristics. Subsequently, the similarity of target
entities and potential matches is analysed in order to select the final mapping. In
contrast to our work, iMAP searchers exploit the value distribution of instance
data and also take domain knowledge (e.g., domain constraints) into account.
Another fundamental difference is the search result, as iMAP searchers derive
(linguistic, numeric, structural) mapping expression. While these expressions are
of crucial importance for relating database entities to each other, they might
be derived automatically in case of process model correspondences. Given a
match between one activity in one process model and multiple activities in a
second model, the model structure can be leveraged to decide whether the former
corresponds to the conjunction, disjunction, or another logical combination of
the latter. Similarly, the approach presented by Xu and Embley [23] relies on
the discovery of characteristics for the instance data, the application of domain
ontologies that describe expected data values, and further external knowledge
(i.e., WordNet relations). Other work that aims at finding complex matches



uses correlation mining techniques. The DCM framework [24] proposes to mine
web query interfaces in order to identify grouping attributes, i.e., attributes
that tend to be co-occurring in web interfaces. This knowledge is exploited to
mine negative correlations between groups of attributes, which, in turn, hint at
potential complex matches. Note that there are other matchers, e.g., Cupid [25],
that retrieve complex matches by just applying a static similarity threshold
for the selection of matches. Given a similarity matrix for all model elements,
various match combinations for a single element might show similarity values
above the threshold, such that complex matches are created. However, such an
approach does not hint at strategies that are used to identify complex matches,
as it assumes this knowledge to be already encoded in the similarity matrix.
We summarize that the few existing approaches for finding complex matches
extensively rely on instance data and external knowledge. The former is not
always available for process models, while the latter raises the question of how
to utilize external knowledge for a dedicated domain. Nonetheless, the use of
instance data and external knowledge are promising directions for future work.

6 Conclusion

This paper presents the ICoP framework, which provides a flexible and adaptable
architecture for the implementation of matchers, by splitting up matchers into
searcher, booster, evaluator and selector components. Also, it enables the devel-
opment of matchers that detect complex 1:n matches, where existing matchers
focus on detecting elementary 1:1 matches. Experimental results show that the
framework can reproduce results of existing matchers by composing them from
separate searcher, booster, evaluator, and selector components. The results also
highlight that we are able to identify a significant number of complex 1:n matches.
While this demonstrates the potential of our framework for improving matching
results, we also explicated that, compared to existing 1:1 matchers, the increase
in recall is often traded for a decrease in precision. Finally, the experiments show
that a minimal level of label similarity for similar activities is required for the
matchers to produce acceptable results. This level is met in case matches are
determined between standard processes and their implementations, but not for
the use-case in which matches are determined between processes that must be
merged.

We aim at addressing this phenomenon in future work. In order to counteract
the decrease in precision when considering complex matches, we plan to inte-
grate the usage of external knowledge into the ICoP framework. The usefulness
of applying such knowledge in general, and WordNet in particular, has been
demonstrated by the aforementioned approaches for matching data schemas [4,
23]. It is worth to mention that external knowledge for the domain of business
processes is also available in terms of several reference models such as the MIT
Process Handbook. Moreover, we aim at extending the framework towards n:m
matches. That requires new heuristics to select groups of activities for analysis,
as the combinatoric problem is increased even further for this kind of matches.
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