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Abstract. Compatibility of two process models can be verified using com-
mon notions of behaviour inheritance. However, these notions postulate
1:1 correspondences between activities of both models. This assumption
is violated once activities from one model are refined or collapsed in
the other model or in case there are groups of corresponding activities.
Therefore, our work lifts the work on behaviour inheritance to the level of
complex 1:n and n:m correspondences. Our contribution is (1) the defini-
tion of notions of behaviour compatibility for models that have complex
correspondences and (2) a structural characterisation of these notions for
sound free-choice process models that allows for computationally efficient
reasoning. We show the applicability of our technique, by applying it in
a case study in which we determine the compatibility between a set of
reference process models and models that implement them.

1 Introduction

For two process models the compatibility of their behaviour can be verified, by
determining that their behaviour is equivalent, modulo activities that have been
added, removed, or refined. Compatibility verification is, for example, applied
to determine whether a business process correctly implements the service that
an organization provides to its clients, as it is specified by another (abstract)
process (cf., [1]). As another example, compatibility verification is used to check
whether a business process correctly implements a reference process (cf., [2, 3]).

Compatibility verification is based on correspondences that are defined be-
tween activities that are considered to be equivalent. For the case of elementary
1:1 correspondences between activities, common notions of behaviour inheri-
tance [4, 5] can be applied to check for the absence of behavioural contradictions.
These notions differ with respect to the treatment of activities that are without
counterpart in the other model (i.e., added or removed). In the behavioural anal-
ysis, these transitions might either be hidden or blocked. If both models satisfy a
certain behaviour equivalence, e.g., branching bisimulation or trace equivalence,
once activities that are without any correspondence are hidden (blocked), we
conclude on projection inheritance (protocol inheritance) [4].
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Fig. 1. Two process models that illustrate an order processing, (a) is a reference model,
(b) is a model customised for a specific organisation

In this paper, we build upon this work on behaviour inheritance and lift it to
the level of complex 1:n and n:m correspondences between two process models.
Here, 1:n correspondences stem from activities from one model that are refined or
collapsed in the other model. Moreover, n:m correspondences represent a relation
between sets activities, for which there are no correspondences between one of
their activity subsets. That is due to differences in modularisation of functionality
between two process models. The problem addressed by this paper is illustrated in
Fig. 1, which depicts a reference model (a), a customised process model (b), and
four correspondences between them. Apparently, model (b) is not a hierarchical
refinement of model (a), such that we observe a non-trivial relation between both
models. As an example, activities A and D of the custom process (b) have been
identified to correspond to activities 1, 3, and 4 in the reference model (a).

The contribution of this paper is twofold. First, we introduce the notions of
projection and protocol compatibility of correspondences and, therefore, process
models. To this end, we use trace equivalence as the underlying equivalence
criterion. Albeit based on the ideas on behaviour inheritance, we speak of compat-
ibility as the notions are not directed. Second, we show that for the class of sound
free-choice process models, these notions of compatibility can be characterised
structurally. Thus, our notions can be decided efficiently based on structural
analysis. In addition, we report on findings from a case study with real world
process models that have been derived by customisation from a reference model.

The remainder of this paper is structured as follows. Section 2 gives prelimi-
naries for our work in terms of a formal model. Section 3 elaborates on our notions
of behaviour compatibility of correspondences. Subsequently, their structural
characterisation is addressed in Section 4. Section 5 introduces our case study.
Finally, we review related work in Section 6 and conclude in Section 7.



2 Preliminaries

Our investigations are based on workflow (WF-) nets [6], a class of Petri nets
used for process modelling and analysis. Note that Petri net based formalisations
have been presented for (parts of) common process modelling languages, such as
BPEL, BPMN, and UML activity diagrams (e.g., [7–9]).

We recall basic definitions according to [6, 10]. A net is a tuple N = (P, T, F )
with P and T as finite disjoint sets of places and transitions, and F ⊆ (P ×
T ) ∪ (T × P ) as the flow relation. Without stating it explicitly, we assume a
net to be always defined as N = (P, T, F ). We write X = (P ∪ T ) for all nodes.
The transitive closure of F is denoted by F+. For a node x ∈ X, its preset and
postset are defined as •x := {y ∈ X | (y, x) ∈ F} and x• := {y ∈ X | (x, y) ∈ F},
respectively. A tuple N ′ = (P ′, T ′, F ′) is a subnet for a net N = (P, T, F ), if
P ′ ⊆ P , T ′ ⊆ T , and F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)). Note that a subnet is
induced by a given subset of places or transitions, respectively. A net N is free-
choice, iff ∀ p ∈ P with |p•| > 1 holds •(p•) = {p}. A workflow (WF-) net is a net
N = (P, T, F ), such that there is exactly one place i ∈ P with •i = ∅, exactly one
place o ∈ P with o• = ∅, and ∀ x ∈ X [ iF+x ∧ xF+o ]. A path of length n ∈ N,
n > 1, is a sequence π : {1, . . . , n} 7→ X, denoted by π(x1, xn) or π = x1, . . . , xn,
which satisfies ((1, x1), (2, x2)), . . . , ((n− 1, xn−1), (n, xn)) ∈ F . We write t ∈ π
if (i, t) ∈ π for some i ∈ N. A subpath π′ of a path π is a subsequence. The set
PN contains all complete paths π(i, o) of a WF-net N . A path π = x1, . . . , xn
in a net N = (P, T, F ) can be restricted to its transitions yielding the path
πT = x1, x3, . . . , xm (if x1 ∈ T ) or πT = x2, x4, . . . , xm (otherwise) with m ∈
{n − 1, n} and xm ∈ T . The set PTN contains all complete paths restricted to
their transitions of N . We write πT ⊆ T ′ if for all (i, t) ∈ π it holds t ∈ T ′ ⊆ T .

We define semantics for a WF-net N = (P, T, F ) with initial place i and
final place o according to [6]. M : P 7→ N is a marking of N , M is the set of all
markings. For a place p ∈ P , Mp is the marking that puts a token on p and no
token elsewhere. For a transition t ∈ T , Mt is the marking that puts a token
on every place p ∈ •t and no token elsewhere. For a WF-net, Mi is the initial,
Mo the final marking. M(p) returns the number of tokens in p, if p ∈ dom(M).
Moreover, for two markings M,M ′ ∈M, M ≥M ′ if M(p) ≥M ′(p) for all p ∈ P .
For any transition t ∈ T and any marking M ∈M, t is enabled in M , denoted by
(N,M)[t〉, iff ∀ p ∈ •t [ M(p) ≥ 1 ]. Marking M ′ is reached from M in N by firing
of t, denoted by (N,M)[t〉(N,M ′), such that M ′ = M −•t+ t•. A firing sequence
of length n ∈ N is a sequence σ : {1, . . . , n} 7→ T . For σ = {(1, tx), . . . , (n, ty)},
we also write σ = t1, . . . , tn. We write t ∈ σ if (i, t) ∈ σ for some i ∈ N, and
σ ⊆ T ′ if for all (i, t) ∈ σ it holds t ∈ T ′ ⊆ T . A subtrace σ′ of a trace σ is a
subsequence of σ. A marking M ′ ∈M is reachable from M ∈M in N , denoted
by M ′ ∈ [N,M〉, if there exists a firing sequence σ, such that (N,M)[σ〉(N,M ′).

We also recall the soundness criterion, which requires WF-nets (1) to always
terminate, and (2) to have no dead transitions (proper termination is implied for
WF-nets) [11]. A WF-net N is live, if for every marking M ∈ [N,Mi〉 and t ∈ T ,
there is a marking M ′ ∈ [N,M〉 such that (N,M ′)[t〉. A WF-net N is bounded,



iff the set [N,Mi〉 is finite. A WF-net N with N = (P, T, F ) is sound, iff the
short-circuit net N ′, N ′ = (P, T ∪ {tc}, F ∪ {(o, tc), (tc, i)}), is live and bounded.

3 Behaviour Compatibility of Correspondences

This section introduces behaviour compatibility for correspondences between WF-
nets. We use WF-nets as behavioural models due to our focus on process models.
It is worth to mention though, that all concepts can be lifted to general Petri nets
or even state transitions systems in a straightforward manner. First, Section 3.1
clarifies the notion of a correspondence. Second, Section 3.2 elaborates on a
partitioning of traces that is imposed by these correspondences. Third, Section 3.3
introduces two kinds of behaviour compatibility for a pair of correspondences.
Finally, Section 3.4 elaborates on how to decide behaviour compatibility.

3.1 Correspondences between WF-nets

In general, a correspondence between two WF-nets is defined by two sets of
transitions of the WF-nets. Following on the classification of correspondences
between data schemata or ontologies [12], we speak of elementary or complex
correspondences depending on the cardinality of the associated set of transitions.

Definition 1 (Correspondence). Let N = (P, T, F ) and N ′ = (P ′, T ′, F ′)
be two WF-nets. The correspondence relation ≡ ⊆ ℘(T ) × ℘(T ′) associates
corresponding sets of transitions of both nets to each other. Let T1 ⊆ T and
T2 ⊆ T ′. If T1 ≡ T2 then (T1, T2) is referred to as a correspondence. (T1, T2) is
called elementary, iff |T1| = |T2| = 1, and complex otherwise.

In the remainder of this paper, we assume all correspondences to be non-
overlapping. That is, two correspondences C = (T1, T3) and C ′ = (T2, T4) must
not share any transition in any of the WF-nets, i.e., T1 ∩ T2 = ∅ and T3 ∩ T4 = ∅.
Overlapping correspondences raise various questions regarding their intended
meaning. Assume two correspondences are defined as C = ({a}, {x, y}) and
C ′ = ({b}, {y}). Then, the occurrence of the two transitions x and y in one model
might correspond to both, the occurrence of transition a only, or the occurrence
of both transitions, a and b, in the other model. Hence, the inherent semantic
ambiguity of overlapping correspondences has to be addressed as a prerequisite
for any behavioural analysis.

In our example in Fig. 1, for instance, C1 would be classified as a complex 3:2
correspondence, while C3 is a 2:1 correspondence. Note that the correspondences
depicted in Fig. 1 are all non-overlapping.

After having defined the notion of a correspondence, it is worth to mention
that such a correspondence induces certain semantics. In terms of trace semantics,
the transitions that are part of a correspondence occur in dedicated subtraces
of the net. Thus, a correspondence induces a relation between subtraces of the
one net and subtraces of the other net. For instance, correspondence C1 in Fig. 1
relates the subtraces 〈1, 3, 4〉 and 〈1, 4, 3〉 in model (a) to the subtrace 〈A,D〉 in



model (b). For C2, in turn, there is a relation between the subtrace 〈2〉 in model
(a) and an infinite set of traces in model (b), e.g., 〈B〉 and 〈B,C,B〉.

3.2 Trace Partitioning based on Correspondences

In the previous section, we argued that a correspondence between sets of transi-
tions induces semantics in terms of subtraces of two nets that are considered to
correspond to each other against the background of the alignment. Therefore, for
two correspondences, the constraints between the respective subtraces of both
correspondences imposed by one net, should hold for the respective subtraces in
the other net as well. Here, constraints refer to the observable order and number
of occurrences of such subtraces in all complete traces of a net.
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Fig. 2. Exemplary traces of the models of Fig. 1
along with their relation to correspondences

We illustrate the relation be-
tween subtraces by means of the
WF-nets of Fig. 1. Here, we see
that the constraints for the sub-
traces relating to the correspon-
dences C1 and C3 are equal.
That is, any subtrace of model
(a) build of transitions of C1,
is followed by a subtrace com-
prising transitions of C3. In ad-
dition, both subtraces occur at most once. This also holds for the respective
subtraces in model (b), as exemplified for a pair of traces in Fig. 2. For correspon-
dences C1 and C2, the constraints imposed by both models are equal either. That
is, in any trace of both nets, a transition belonging to C1 is observed first and
might potentially be followed by transitions of C1 and C2. Note that the specific
order of interleaving transitions of both correspondences is different though. For
instance, in the subtrace 〈A,B,D,C,B〉 of model (b), two transitions of C1 are
followed by a transition of C2. This is not possible in any subtrace of model (a),
due to the different number of interleaving transitions of C1 and C3 in both nets,
cf., Fig. 2. When focussing on correspondences C3 and C4, however, we detect
differences in the imposed constraints. For instance, there is a trace in model (b),
in which a transition of C4 occurs before any transition of C3, which yields a
contradiction with the semantics of model (a).

These examples illustrate that the interleaving of transitions belonging to
different correspondences has to be taken into account when assessing behaviour
compatibility. We capture these transitions as follows.

Definition 2 (Interleaving Transitions). Let N = (P, T, F ) be a WF-net.
Two transitions (t1, t2) ∈ (T × T ) are interleaving, iff for each trace σ1 ∈ LN
with (i, t1), (i + 1, t2) ∈ σ1 for some i ∈ N, there is a trace σ2 ∈ LN with
σ2 = {(i, t2), (i+ 1, t2)} ∪ {(j, t) | (j, t) ∈ σ1 ∧ j 6= i ∧ j 6= i+ 1}. Given two
disjoint sets of transitions T1, T2 ⊆ T , the set ι(T1,T2)(N) ⊆ T1 ∪ T2 contains all
transitions that are part of an interleaving transition pair (t1, t2) ∈ (T1 × T2).



For our example in Fig. 1, the set of interleaving transitions for the correspon-
dences C1 = (T1, T3) and C2 = (T2, T4) are defined as ι(T1,T2) = {2, 3, 4} for
model (a) and ι(T3,T4) = {B,C,D} for model (b).

Given two correspondences for a net, their dependencies can be assessed in a
certain trace by partitioning the trace into subtraces that represent interleaving
and non-interleaving parts of the correspondences.

Definition 3 (Partitioning of a Trace). Let N = (P, T, F ) be a WF-net and
T1, T2 ⊆ T two disjoint sets of transitions. For any trace σ ∈ LN the partitioning
ρ(T1,T2)(σ) induced by T1 and T2 is a sequence of subtraces of maximal length
ρ(T1,T2)(σ) = σ1, . . . , σn such that for any i ∈ N with 1 ≤ i ≤ n it holds either
σi ⊆ T1 \ι(T1,T2)(N), σi ⊆ T2 \ι(T1,T2)(N), σi ⊆ ι(T1,T2)(N), or σi ⊆ T \(T1∪T2).
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Fig. 3. Partitioning of traces of
the models in Fig. 1

According to this definition, any transition
that is part of a trace belongs to one of the
four classes w.r.t. two sets of transitions (and,
therefore, correspondences). Either it is an in-
terleaving transition, it belongs to one of the
sets of transitions without being an interleav-
ing transition, or it is not part of the two sets
at all. The partitioning of traces for the models
of our example is illustrated in Fig. 3 for three
exemplary pairs of correspondences. Note that
all transitions that are not part of the respec-
tive correspondences have been neglected. We
see that for correspondences C1 and C3, in all traces a subtrace comprising non-
interleaving transitions of C1 is followed by a subtrace comprising non-interleaving
transitions of C3 in both models, (a) and (b). Similarly, for correspondences C1
and C2, non-interleaving transitions of C1 are followed by a subtrace consisting
of interleaving transitions of both correspondences in both models. In contrast,
for correspondences C3 and C4, the contradicting constraints as discussed above
are also visible in the trace partitioning. That is, non-interleaving transitions of
C3 are followed by non-interleaving transitions of C4 in model (a). In contrast,
interleaving transitions of both correspondences are followed by non-interleaving
transitions of C4 in model (b).

3.3 Notions of Behaviour Compatibility

Based on a trace partitioning that is induced by the transitions of two correspon-
dences, we define two notions of compatibility. Informally speaking, both notions
require that for each trace of the one net, there is a trace in the other net that
shows the same partitioning in interleaving and non-interleaving subtraces of
the transitions of the respective correspondences. However, we distinguish two
ways of coping with transitions that are not part of any correspondence. These
transitions might be hidden or blocked, cf., [4, 5]. Following on the notions of
projection inheritance (transition hiding) and protocol inheritance (transition



blocking), this distinction leads to the notions of projection compatibility and
protocol compatibility of correspondences. First and foremost, we define projec-
tion compatibility for correspondences. It uses the notion of a trace projection.
Given a WF-net N = (P, T, F ), a set of transitions H ⊆ T , and a trace σ ∈ LN ,
the set Hσ|j = {(x, t) ∈ σ | x < j ∧ t ∈ H} denotes the occurrences of transitions
of H in σ up to index j ∈ N. Based thereon, we define the projection τH(σ) for
a trace σ ∈ LN of length n induced by H as τH(σ) =

⋃|Hσ|n|
i=0 (i, ti) with ti ∈ H,

such that ∃ j ∈ N [ (j, ti) ∈ σ∧ i = |Hσ|j | ]. Informally, the projected trace τH(σ)
is derived by removing all transitions in H from σ.

Definition 4 (Projection Compatibility). Let N = (P, T, F ) and N ′ =
(P ′, T ′, F ′) be WF-nets, and C1 = (T1, T3), C2 = (T2, T4) two correspondences.
◦ C1 and C2 are projection compatible from N to N ′, iff for any trace σ ∈
LN , there is a trace σ′ ∈ LN ′ , such that for the partitioned projections
ρ(T1,T2)(τ(T1∪T2)(σ)) = σ1, . . . , σn and ρ(T3,T4)(τ(T3∪T4)(σ

′)) = σ′1, . . . , σ
′
n and

all i ∈ N with 0 ≤ i ≤ n it holds:
− σi ⊆ (T1 \ ι(T1,T2)(N))⇒ σ′i ⊆ (T3 \ ι(T3,T4)(N

′)).
− σi ⊆ (T2 \ ι(T1,T2)(N))⇒ σ′i ⊆ (T4 \ ι(T3,T4)(N

′)).
− σi ⊆ ι(T1,T2)(N)⇒ σ′i ⊆ ι(T3,T4)(N

′).
◦ C1 and C2 are projection compatible, iff they are projection compatible in

either direction.

We see that projection compatibility can be decided for two correspondences in
isolation, i.e., independent of other correspondences. That is due to the fact that
any transitions not belonging to the respective correspondences are projected
before comparing the partitioning of traces. In contrast, protocol compatibility
of two correspondences has to be decided always against the background of an
alignment, i.e., a set of correspondences. Following on the approach introduced
for protocol inheritance in [4], we use an encapsulation operator δH that creates
the subnet induced by a set of transitions H ⊆ T from a net N = (P, T, F ),
such that δH(N) = (P,H, FH). Encapsulation of a WF-net might yield a net
that is not a WF-net anymore. Therefore, we also define the normalisation
operator ηN that creates the workflow subnet of a subnet N1 of a WF-net N ,
such that ηN (N1) = (Pη, Tη, Fη) with Pη = P1 \ Xr and Tη = T1 \ Xr and
Xr = {x ∈ X1 | i��F+

1 x ∨ x��F+
1 o } (i and o being the initial and final place of N).

Normalisation yields the empty net, if there is no workflow subnet.

Definition 5 (Protocol Compatibility). Let N = (P, T, F ) and N ′ =
(P ′, T ′, F ′) be WF-nets and ≡ a correspondence relation between them. Let
T≡ ⊆ T and T ′≡ ⊆ T ′ be the transitions of both nets that are part of any
correspondence, and E = ηN (δT≡(N)) and E′ = ηN ′(δT ′≡(N ′)) the normalised
encapsulated nets. Let C1 = (T1, T3) and C2 = (T2, T4) be two correspondences.
◦ C1 and C2 are protocol compatible from N to N ′, iff E to E′ are WF-nets

and C1 and C2 are projection compatible from E to E′.
◦ C1 and C2 are protocol compatible, iff they are protocol compatible in either

direction.



We see that protocol compatibility of correspondences between two nets can be
traced back to projection compatibility of the normalised encapsulated nets that
contain only aligned transitions. However, it is important to notice that both
notions are orthogonal. That is, correspondences between two nets might show
solely projection compatibility, but not protocol compatibility, and vice versa.

Regarding the WF-nets in Fig. 1, we conclude that, for instance, correspon-
dences C1 and C2 are projection compatible, whereas correspondences C1 and
C4 are not due to the interleaving of their transitions in model (b), which is not
possible in model (a), cf., Fig. 3. Note that is not reasonable to apply protocol
compatibility right away for our example, as both models contain no-operation
(NOP) transitions that realise the splitting and merging of control flow and are
not part of any correspondence. If these transitions are not part of the encap-
sulated nets, normalisation would yield an empty net and there would not be
any completed trace from the initial to the final marking in both nets. Still,
one might neglect these transitions, such that they are part of the encapsulated
nets as well. Thus, encapsulation removes solely transitions H and I of model
(b), which are not aligned. As removal of these transitions does not change the
observable behaviour of the remaining transitions, correspondences C1 and C2
are also protocol compatible, whereas correspondences C1 and C4 are not, owing
to the aforementioned issues.

So far, we discussed the compatibility of a pair of correspondences in iso-
lation. Apparently, the notions can be lifted from a pair of correspondences
to a set of correspondences, i.e., a correspondence relation, between two nets
in a straight-forward manner. A correspondence relation between two nets is
projection (protocol) compatible, if and only if, all correspondences are pairwise
projection (protocol) compatible.

3.4 Decidability of Behaviour Compatibility
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Fig. 4. STS of model (a) of Fig. 1
along with transitions related to cor-
respondences C1 and C2

In the general case, behaviour compatibil-
ity of two correspondences between two
WF-nets can be decided by state space
exploration. Under the assumption of a
finite state space, all state transitions re-
late to none of the correspondences, one
of the correspondences, or the interleav-
ing of both correspondences, respectively.
Therefore, the trace partitioning (cf., Def-
inition 3) is directly visible in the respec-
tive state transition system (STS). Fig. 4
illustrates this dependency by the STS of
model (a) of Fig. 1. In the lower system,
we highlighted the transitions that are re-
lated to correspondences C1 = (T1, T3) and C2 = (T2, T4). That is, each of the
elementary state transitions that are part of T1∪T2 can be classified as belonging



to one of the three sets, ι(T1,T2), T1 \ ι(T1,T2), or T2 \ ι(T1,T2). Based thereon, com-
plex state transitions might be derived that represent the transition sequences
of maximal length that comprise solely transitions of one of the aforementioned
three sets and transitions that are not in T1 ∪ T2. The latter is illustrated in the
lower STS in Fig. 4, in which the transition ι(C1,C2) contains solely interleaving
transitions and transitions that are not related to C1 and C2.

Moreover, interleaving transitions can be characterised as being enabled
concurrently in some marking or as not changing the marking when being fired.

Lemma 1. Let N = (P, T, F ) be a WF-net. A pair of transitions (t1, t2) ∈ (T×T )
is interleaving, iff there is a marking M ∈ [N,Mi〉 such that (1) M ≥Mt1 +Mt2

and with (N,M)[t1〉(N,M1) and (N,M)[t2〉(N,M2) it holds Mo ∈ [N,M1〉 and
Mo ∈ [N,M2〉, or (2) (N,M)[t1〉(N,M), (N,M)[t2〉(N,M), and Mo ∈ [N,M〉.

Proof.
⇒ Given a complete trace σ1, t1, t2, σ2 let M1 be the marking that is reached

from Mi by firing σ1. Due to the existence of a complete trace σ1, t2, t1, σ2,
we know (N,M1)[t1〉 and (N,M1)[t2〉. After firing of t1 in M1, t2 has to
be enabled and vice versa. Thus, either t1 and t2 are enabled concurrently
(M1 ≥Mt1 +Mt2) or firing of t1 or t2 does not change the marking. In any
case, Mo can be reached after firing of t1 and t2 as σ1, t1, t2, σ2 is a complete
trace.

⇐ With σ1 being any firing sequence to reach a marking M as defined in the
lemma, we reach M ′ by firing of t1 and t2 in any order. Then, Mo can be
reached from M ′ by σ2, such that the complete trace is either σ1, t1, t2, σ2 or
σ1, t2, t1, σ2. Thus, t1 and t2 are interleaving. ut

Based thereon, we conclude decidability of behaviour compatibility of correspon-
dences for nets with a finite state space.

Theorem 1. Given two bounded WF-nets and a set of correspondences, it is
decidable whether two correspondences are projection or protocol compatible.

Proof. Given the transitions of two correspondences, their interleaving transitions
have to be identified first. According to Lemma 1, this can be traced back to
the submarking reachability problem, which is decidable for unlabelled Petri
nets [13]. Both nets are bounded, hence their state space is finite. Thus, complex
state transitions are established that comprise either non-interleaving transitions
of one of the correspondences or interleaving transitions, and transitions that are
not related to both correspondences. Projection compatibility can be decided
by checking whether both nets show equal sequences of these complex state
transitions. Decidability of protocol compatibility follows directly, as it is grounded
on projection compatibility for normalised encapsulated nets, while encapsulation
and normalisation preserve boundedness. ut

Apparently, any approach of deciding behaviour compatibility based on state space
exploration is computationally hard in the general case, due to the state explosion
problem [14]. Therefore, structural characterisations of behaviour compatibility
for certain classes of nets are crucial for any real-world application.



4 A Structural Characterisation of Compatibility

This section shows that projection compatibility and, therefore, also protocol
compatibility can be decided efficiently for correspondences between sound free-
choice WF-nets. That is due to the fact that for sound free-choice WF-nets, there
is a tight coupling of syntax and semantics. First, Section 4.1 shortly discusses the
properties of sound free-choice WF-nets that are used in our approach. Second,
Section 4.2 introduces the notion of path consistency of two correspondences
between two WF-nets. Finally, Section 4.3 elaborates on how this structural
characterisation is used to decide behaviour compatibility.

4.1 Properties of Sound Free-Choice WF-Nets

As mentioned above, sound free-choice WF-nets show a tight coupling of syntax
and semantics. In particular, if N is sound and free-choice, the existence of a
path π(x, y) between places x and y implies the existence of a firing sequence
containing all transitions on π(x, y) (cf., Lemma 4.2 in [15]). Actually, this
implication requires the marking My to be a home marking (a marking reachable
from every marking that is reachable from the initial state). Still, the implication
might be lifted to all home markings M1 with M1(y) > 0. Due to soundness of
the net N , the short-circuit net N ′ is live and bounded, such that all markings
M ∈ [N,Mi〉 are home markings in N ′. Thus, all markings M1(y) > 0 are
reachable from markings M2(x) > 0, if M1,M2 ∈ [N ′,Mi〉.

Another important property of sound free-choice nets is the possibility to
compute the following two relations efficiently.

Concurrency Relation. The concurrency relation || ⊆ X×X for the nodes
X of a net N contains all pairs (x1, x2) such that M ≥ Mx1 + Mx2 for some
reachable marking M . Thus, the concurrency relation identifies concurrently
enabled transitions or marked places, respectively. Note that any sound free-
choice net is also safe (cf., Lemma 1 in [16]). Thus, a single transition cannot be
enabled concurrently with itself. According to [17], the concurrency relation can
be determined in O(n3) time for live and bounded free-choice nets with n as the
number of nodes of the net.

Exclusiveness Relation. The exclusiveness relation + ⊆ T × T for the
transitions of a net N contains all pairs (t1, t2) that never occur together in a
complete trace, i.e., for all complete traces σ ∈ LN it holds t1 ∈ σ ⇒ t2 6∈ σ
and t2 ∈ σ ⇒ t1 6∈ σ. According to [18] (Lemma 3), the exclusiveness relation
can be deduced from the concurrency relation and the transitive closure of the
flow relation for sound free-choice nets. Based thereon, the exclusiveness relation
can also be computed in O(n3) time with n as the number of nodes as detailed
in [18]. The exclusiveness relation can be lifted from the transitions to all nodes
of a net. Two places p1 and p2 are exclusive if there is no complete trace that
visits two markings M1 and M2 with M1(p1) > 0 and M2(p2) > 0. Obviously,
this information can be deduced directly from the exclusiveness of transitions for
sound free-choice nets.
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Fig. 5. A path of model (a) of Fig. 1 along with the partitioning induced by the
non-interleaving and interleaving transitions of correspondences C1 and C2

In our example in Fig. 1, for instance, transitions D and E of model (b) are
in the concurrency relation, while transitions E and F are exclusive.

4.2 Path Consistency of Correspondences

In order to reason on behaviour compatibility of two correspondences between
two sound free-choice WF-nets, we assess their structural consistency. That is,
the existence of certain paths in two process models is evaluated with respect
to the correspondences. To this end, we define the partitioning of a path that is
induced by two sets of transitions, similar to the partitioning of a trace presented
in Section 3.2. Here, we consider solely the transitions of a path and neglect all
places. Note that such a partitioning is grounded on the interleaving transitions
of both sets. However, according to Lemma 1, the notion of two interleaving
transitions can be traced back to their concurrent enabling (or a structural
analysis of their pre- and postset, respectively), which, in turn, can be decided
structurally for sound free-choice WF-nets, cf., Section 4.1.

Definition 6 (Partitioning of a Path). Let N = (P, T, F ) be a WF-net and
T1, T2 ⊆ T two disjoint sets of transitions. For any path of transitions π ∈ PTN
the partitioning ρ(T1,T2)(π) induced by T1 and T2 is a sequence of subpaths of
maximal length ρ(T1,T2)(π) = π1, . . . , πn such that for any i ∈ N with 1 ≤ i ≤ n
it holds either πi ⊆ T1 \ ι(T1,T2)(N), πi ⊆ T2 \ ι(T1,T2)(N), πi ⊆ ι(T1,T2)(N), or
πi ⊆ T \ (T1 ∪ T2).

Fig. 5 Illustrates the partitioning of an exemplary path of model (a) of our example
with respect to correspondences C1 and C2. As mentioned before, transition 1 is
a non-interleaving transition related to correspondence C1. Transition 4 is in the
set of interleaving transitions of both correspondences. All other transitions on
the highlighted path do not relate to any of the correspondences.
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When comparing the partitioning of paths in-
duced by two correspondences between two WF-
nets, certain subpaths have to be neglected. That
is, subpaths that represent a detour of a transi-
tions that is part of a correspondence are identified
and removed from the net. Apparently, this reduc-
tion has to happen solely in case there is another
transition of the correspondence that might be
enabled concurrently. We illustrate the need for



this kind of preprocessing with Fig. 6. It shows an excerpt of model (b) of our
example. Assume that we investigate correspondences C3 and C4. Then, a path
comprising transitions H and I would suggest that a non-interleaving transition
related to C4 (transition J) can occur without any occurrence of an interleaving
transition of both correspondences (transitions E, F , and G). Hence, the subpath
comprising transitions H and I is removed by the preprocessing. Note that the
preprocessing uses the concurrency relation and the exclusiveness relation, which
can be derived from the net structure as discussed in Section 4.1.

Definition 7 (Preprocessing). Let N = (P, T, F ) be a WF-net and T1, T2 ⊆ T
two disjoint sets of transitions. Let Xpp ⊆ (X \ (T1 ∪ T2)) contain all nodes x for
which there is a transition t1 ∈ T1 ∪ T2, such that x||t1 and for all t2 ∈ T1 ∪ T2

with t1||t2 it holds either x||t2 or x+ t2. The preprocessed WF-net for N is a
subnet N ′ = (P ′, T ′, F ′) with P ′ = P \Xpp and T ′ = T \Xpp.

Once two WF-nets are preprocessed with respect to a pair of correspondences,
their path consistency is assessed. Loosely spoken, path consistency implies that
both nets show equal partitionings of paths from the initial to the final place
regarding the correspondences when transitions not related to the correspondences
are neglected. Similar to the projection for a trace (cf., Section 3.3), we define the
projection of path as follows. Given a WF-net N = (P, T, F ), a set of transitions
H ⊆ T , and a path π ∈ PTN , the set Hπ|j = {(x, t) ∈ π | x < j ∧ t ∈ H}
denotes the containment of transitions of H in π up to index j ∈ N. Then, the
projection τH(π) for a path π ∈ PTN of length n induced by H is defined as
τH(π) =

⋃|Hπ|n|
i=0 (i, t) with t ∈ H, such that ∃ j ∈ N [ (j, t) ∈ π ∧ i = |Hπ|j | ].

Definition 8 (Path Consistency of Correspondences). Let N = (P, T, F )
and N ′ = (P ′, T ′, F ′) be two WF-nets preprocessed with respect to two correspon-
dences C1 = (T1, T3) and C2 = (T2, T4).
◦ C1 and C2 are path consistent from N to N ′, iff for any path of transitions
π ∈ PTN , there is a path π′ ∈ PT ′N ′ , such that for the partitioned projections
ρ(T1,T2)(τ(T1∪T2)(π)) = π1, . . . , πn and ρ(T3,T4)(τ(T3∪T4)(π

′)) = π′1, . . . , π
′
n and

all i ∈ N with 0 ≤ i ≤ n it holds:
− πi ⊆ (T1 \ ι(T1,T2)(N))⇒ π′i ⊆ (T3 \ ι(T3,T4)(N

′).
− πi ⊆ (T2 \ ι(T1,T2)(N))⇒ π′i ⊆ (T4 \ ι(T3,T4)(N

′).
− πi ⊆ ι(T1,T2)(N)⇒ π′i ⊆ ι(T3,T4)(N

′).
◦ C1 and C2 are path consistent, iff they are path consistent in either direction.

For our example setting in Fig. 1 and correspondences C1 and C2, we see that both
models are path consistent. All paths from the initial to the final place in both
models shows the same (projected) partitionings, i.e., a non-interleaving transition
related to C1 is followed by an interleaving transition of both correspondences.
In contrast, correspondences C3 and C4 are not path consistent. Even if both
nets are preprocessed, for instance, model (a) contains a path in which non-
interleaving transitions related to correspondence C3 (transitions 5 and 6) are
followed by a non-interleaving transition related to C2 (transition 7). Such a
path does not exit in model (b) as transitions E, F , and G are interleaving.



4.3 Reasoning on Behaviour Compatibility

We already illustrated the dependency between path consistency of a pair of
correspondences and their behaviour compatibility using our example. In fact, we
can show that both notions coincide for the case of sound free-choice WF-nets.

Theorem 2. Let N = (P, T, F ) and N ′ = (P ′, T ′, F ′) be two preprocessed sound
free-choice WF-nets, and C1 = (T1, T3), C2 = (T2, T4) two correspondences.
Then, path consistency and projection compatibility of C1 and C2 coincide.

Proof. Let N , N ′, C1, and C2 be defined as above.
⇒ Let C1 and C2 be path consistent for N and N ′, and assume that they are

not projection compatible. From the former, we know that for each path from
i to o in N , there is a path from i′ to o′ in N ′ that shows the same partitioning
with respect to non-interleaving transitions of C1, non-interleaving transitions
of C2, or interleaving transitions of both correspondences. Both nets are
sound and free-choice. Hence, each of these paths implies the existence of a
trace from Mi (Mi′) to Mo (Mo′) containing all transitions on the path. Due
to the equal partitioning of the paths, the partitioning of the respective traces
is equal for all transitions on the paths. Still, if both nets are not projection
compatible, one of these traces in one net has to contain a transition that is not
on the path and that violates the partitioning induced by the path. Without
loss of generality, we assume such a transition to be part of N . In order to
violate the partitioning transition tv must be part of the correspondences,
i.e., tv ∈ T1 ∪ T2. If tv is not part of any consistent path π ∈ PTN , but part
of the complete firing sequence σ induced by π, there has to be a transition
t1 ∈ T with t1 ∈ π such that t1||tv. We distinguish two cases.

(I) t1 ∈ T1 ∪ T2. Then, t1 and tv belong to the same partitioning, i.e.,
set of transitions ι(T1,T2)(N), T1 \ ι(T1,T2)(N), or T2 \ ι(T1,T2)(N) due
to the definition of ι(T1,T2)(N) and the potential concurrent enabling
of t1 and tv implied by t1||tv (cf., Lemma 1). As t1 and tv are part
of the same partitioning, the occurrence of tv does not violate the
partitioning induced by π.

(II) t1 6∈ T1 ∪ T2. As N is preprocessed (cf., Definition 7), this implies
the existence of a transition t2 ∈ T1 ∪ T2 with t2||tv, t2��||t1, and t2�+t1.
Consider two more cases:
(a) t2 ∈ π. Then, t2 and tv are part of the same partition and tv does

not violate the partitioning induced by π due to the argument
given in case I.

(b) t2 6∈ π. Then, there must be a transition t3 ∈ T with t3 ∈ π such
that t3||tv. Now the argument given for t1 (cases I and II) can be
applied for t3. Hence, tv does not violate the partitioning induced
by π either.

⇐ Let C1 and C2 be projection compatible for N and N ′, and assume that they
are not path consistent. Let σ ∈ LN be a complete trace of N and σj and σj+1

be two subtraces of ρ(T1,T2)(τ(T1∪T2)(σ)). Due to projection compatibility,
there is a corresponding trace σ′ ∈ LN ′ that has the same partitioning with



respect to C1 and C2, i.e., it has corresponding subtraces σ′j and σ′j+1. Let
t1, t2 ∈ T be two transitions, such that t1 is part of σj and t2 is part of σj+1.
Both transitions are part of different partitions, hence t1��||t2 (cf., Lemma 1).
As both are part of trace σ, it also holds t1�+t2. As they are not concurrent
nor exclusive, there is a path π ∈ PTN that contains both transitions, t1 and
t2. In the projected partitioning of π, there are two subpaths containing both
transitions, πk and πk+1. Note that there cannot be any subpath representing
a different partition in between those subpaths, as such a subpath would
violate the dependency between subtraces σj and σj+1. Let t3, t4 ∈ T ′ be
two corresponding transitions in N ′, i.e., t3 is part of σ′j and t4 is part of
σ′j+1. Following on the argument given for t1 and t2, again, it holds t3��||t4 and
t3�+t4. Hence, there is a path π′ ∈ PT ′N ′ containing t3 and t4 in two subpaths
π′l and π′l+1. This argument can be applied to all subtraces σj and σj+1 of
any trace σ ∈ LN . That yields a consistent path partitioning in all cases,
such that our assumption is violated. ut

Based thereon, behaviour compatibility of correspondences between sound free-
choice WF-nets can be decided efficiently.

Corollary 1. The following problem can be solved in O(n3) time with n as the
maximum of the number of nodes of both nets.
For two correspondences between two sound free-choice WF-nets, to decide pro-
jection and protocol compatibility.

Proof. First, the interleaving transitions of both correspondences in both nets
have to be determined. According to Lemma 1, interleaving transitions have
either an equal pre- and postsets or they are enabled concurrently. The former is
requires the iteration over the Cartesian product of transitions and a linear time
check for each pair, while the latter can be calculated in O(n3) time with n being
the number of nodes of a live and bounded free-choice net [17]. Due to soundness,
the short-circuit nets of both WF-nets are live and bounded, such that this
algorithm can be applied. Second, both WF-nets need to be preprocessed based
on the concurrency and the exclusiveness relation. The latter can be computed
in O(n3) time with n being the number of nodes of a sound free-choice net
according to [18]. Lifting exclusiveness to places requires solely an analyse of
the pre- and postsets of two places, i.e., whether these presets (postsets) overlap
and whether the contained transitions are exclusive. The actual preprocessing
requires a check of each node with each possible pair of transitions that are part
of correspondences. Hence, it can be done in O(n3) time as well. Assessing path
consistency between both WF-nets is done as follows. Starting with the initial
place of net, all paths are explored until either an already visited node is reached
or a transition that belongs to a new path partition is found. Then, the second
net is searched for a mirrored path. This procedure is repeated until a difference
in the path partitioning is detected or the final place of the first net is reached.
Subsequently, the procedure is repeated with the nets exchanged. During such a
check, each flow of a net might be visited. Hence, it requires O(n2) time with



Table 1. Overview on compatible and incompatible correspondences

Type of Comp. Type of Correspondence Pair Compatible Incompatible

Projection Comp. Elementary 83% (1732) 17% (354)
Complex 30% (115) 70% (274)

Protocol Comp. Elementary 38% (86) 62% (143)
Complex 8% (7) 92% (86)

n = max(n1, n2) and n1 and n2 as the number of nodes of the two WF-nets.
Therefore, the overall time complexity of deciding projection compatibility is
O(n3) with n = max(n1, n2). As protocol compatibility is grounded on projection
compatibility for the encapsulated WF-nets, it can be decided in O(n3) as well.

ut

5 Evaluation

We evaluated our techniques for deciding behaviour compatibility, by applying
them to a collection of similar model pairs, between which correspondences were
already identified. For both notions of behaviour compatibility, we first identified
incompatibilities for all pairs of models with respect to their correspondences.
Second, we investigated the resulting incompatibilities, to determine whether
they represent information that is useful to the designer.

The collection consisted of 10 pairs that were taken from Dutch municipalities.
Each of these pairs represents a standard process [19] and an implementation of
this standard process by a municipality. Each process model from the collection
has, on average, 17.9 nodes, with a minimum of 11 nodes and a maximum of 69
nodes for a single process model. The average number of arcs pointing into or
out of a single node is 1.2. In total there were 190 correspondences between the
model pairs, 31 of which were complex. All models were available as (or could be
transformed into) free-choice WF-nets. In addition, we verified that all models
are sound, such that the structural characterisation of behaviour compatibility
as introduced in Section 4 could be leveraged.

Projection Compatibility. For all 190 correspondences in total 2475 com-
binations of correspondences were to be investigated for projection compatibility.
Table 1 shows the number of projection compatible and incompatible pairs for
the correspondences. We say that a pair of correspondences is elementary, if both
correspondences are elementary; if one is complex, we say that the pair is complex.
The table shows that most elementary correspondences are projection compatible,
while most complex correspondences are not. This result is not surprising, because
complex correspondences are more complicated than elementary correspondences
and, therefore, it is harder to make them compatible.

After determining the incompatible correspondence pairs, we randomly se-
lected 25 elementary and 25 complex pairs of correspondences to investigate
whether they represented information that is useful to the designer. This was
indeed the case. However, even within this subset, there were 26 pairs that had



a correspondence in common with another pair (of the 26). If we considered
each correspondence pair only once, there were only 8 cases of incompatibility;
the ‘common’ pairs caused 3.25 incompatibilities on average. This leads to the
conclusion that incompatibilities can be presented to the designer in a more
compact manner.

Protocol Compatibility. For all pairs of models, we also derived the encap-
sulated models in order to assess protocol compatibility. To this end, we removed
solely transitions representing activities that are not part of any correspondence
and neglected additional NOP transitions realising the splitting and merging of
control flow. However, for four out of our 10 pairs of models, we observed that at
least for one model encapsulation led to a net that could not be normalised into
a WF-net. In these cases, encapsulation led to a disconnect of the initial and
the final place, such that both places were no longer connected by any path. As
these models describe processes that are bound to failure (they cannot complete
properly), they could not be investigated any further. For the remaining four
pairs of models, we observed that the normalised encapsulated nets were sound,
such that our structural characterisation of behaviour compatibility could be
exploited. As illustrated in Table 1, the amount of compatible correspondences is
much lower than for the case of projection compatibility. This is mainly due to
activities that have been introduced as intermediate steps when implementing
the standard process. Against this background, apparently, the notion of protocol
compatibility does not seem to be appropriate for the use case of assessing the
deviations of the reference process and the processes implemented by different
municipalities.

6 Related Work

Our work is related to three streams of research, matching of process models,
model specialisation, and process model similarity.

In order to assess behaviour consistency, we postulate the existence of corre-
spondences between activities of two process models. In some use cases, these
correspondences are given implicitly, e.g., when deriving a custom process model
from a reference model. Still, other use cases might require the explicit definition
of correspondences, such that automatic support for suggesting correspondences is
needed. To this end, techniques based on structural analysis and natural language
processing have been proposed in order to identify correspondences between single
activities [20, 21]. Recently, the ICoP framework has been introduced, which aims
also at the detection of complex correspondences [22]. In addition, techniques
known from the field of schema and ontology matching [12, 23] can be applied to
detect correspondences between process model elements.

A behavioural model can be specialised by refinement and extension [5].
Refinement refers to the definition of an activity or a set thereof in more detail.
Extension, in turn, refers to the act of adding new activities. Apparently, both
transformations might or might not preserve one of the well-known behaviour
equivalences, see [24]. Behaviour consistent refinements have been investigated in



detail for many formal models, among them process algebras and Petri nets [24–
27]. See also [28] for a thorough survey on Petri net refinements. Obviously, the
work on model refinement and extension has a different focus than our work.
We target at an assessment of correspondences between models for which the
concrete specialisation relation is not known. Still, refinement and extension
transformations that preserve the introduced notions of projection and protocol
compatibility need to be investigated. For the existing notions of behaviour inher-
itance, projection and protocol inheritance, a set of four inheritance preserving
model transformations has been presented in [4].

Behaviour compatibility is a boolean criterion based on a behaviour equiva-
lence. However, process models that are related by correspondences might also
be analysed regarding their behavioural similarity. Recently, the question of how
to quantify behavioural similarity has received much attention [29]. Process simi-
larity can be assessed by using behavioural abstractions [30], by relating similar
(sub-) traces of two models to each other [31, 32], or by quantifying the degree of
state-based simulation [33]. Note that these approaches typically focus on the
complete behaviour of two process models. Therefore, additional effort might be
required to give diagnostic information with respect to the correspondences in
case of a similarity value below one.

7 Conclusion

In this paper, we addressed the question of how to decide on the compatibility of
two business process models. To this end, correspondences between both models
are assumed to exist, whereas we do not impose any restrictions on the type
of correspondences that can exist. In particular, there might be complex 1:n
and or even n:m correspondences between activities of both models. Building
upon the existing work on behaviour inheritance, we introduced the notions of
projection and protocol compatibility of correspondences between process models.
They guarantee that correspondences do not induce behavioural contradictions in
terms of trace semantics, once activities that are not part of any correspondence
are hidden or blocked. Besides the definition of these notions, our contribution
is a structural characterisation of both notions for a pair of correspondences
between sound free-choice WF-nets. Based thereon, behaviour compatibility can
be decided in O(n3) time with n as the maximum of the number of nodes of
both nets. As a proof of concept we applied our technique to determine the
compatibility between 10 reference process models and 10 process models that
implement them.

Clearly, our contribution is of relevance not only for the use case of customising
reference models. The application of behaviour inheritance has been advocated
to solve other problems, such as those related to dynamic change, information
management [2], and service-oriented design [1]. Dynamic change addresses the
question how to ensure behavioural consistency for running process instance
once the respective process model is adapted. Information management refers
to an aggregated view on multiple variants of a process model. Service-oriented



design addresses the issue of designing a business process that correctly imple-
ments a service that an organisation provides to its clients, as it is specified
by another (abstract) process. Our notions of behaviour compatibility allow
for tackling these problems in a broader context by going beyond elementary
1:1 relations between activities when comparing the behaviour of two models.
Still, this requires further investigations on model transformations that preserve
behaviour compatibility. Although a formal discussion is beyond the scope of
this paper, the aforementioned four transformation rules that preserve projection
(and partly protocol) inheritance [4] can be assumed to preserve our notions
of behaviour compatibility as well. The presence of complex correspondences,
however, opens the space for investigations on transformation rules that consider
the partitioning of activities induced by such correspondences. Another direction
for future work is the application of stricter notions of behaviour equivalence
as the underlying criterion. Hence, behaviour compatibility might be grounded
on branching bisimulation. Finally, the application of our technique in a case
study shows that many redundant incompatibilities are notified to the process
designer. Consequently, in future work we aim at developing a technique that
presents incompatibilities in a compact manner.
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